Email updates

Keep up to date with the latest news and content from Algorithms for Molecular Biology and BioMed Central.

Open Access Research

Incompatible quartets, triplets, and characters

Brad Shutters*, Sudheer Vakati and David Fernández-Baca

Author Affiliations

Department of Computer Science, Iowa State University, Ames, IA 50011, USA

For all author emails, please log on.

Algorithms for Molecular Biology 2013, 8:11  doi:10.1186/1748-7188-8-11

Published: 1 April 2013


We study a long standing conjecture on the necessary and sufficient conditions for the compatibility of multi-state characters: There exists a function f(r) such that, for any set C of r-state characters, C is compatible if and only if every subset of f(r) characters of C is compatible. We show that for every r≥2, there exists an incompatible set C of Ω(r2)r-state characters such that every proper subset of C is compatible. This improves the previous lower bound of f(r)≥r given by Meacham (1983), and f(4)≥5 given by Habib and To (2011). For the case when r=3, Lam, Gusfield and Sridhar (2011) recently showed that f(3)=3. We give an independent proof of this result and completely characterize the sets of pairwise compatible 3-state characters by a single forbidden intersection pattern.

Our lower bound on f(r) is proven via a result on quartet compatibility that may be of independent interest: For every n≥4, there exists an incompatible set Q of Ω(n2) quartets over n labels such that every proper subset of Q is compatible. We show that such a set of quartets can have size at most 3 when n=5, and at most O(n3) for arbitrary n. We contrast our results on quartets with the case of rooted triplets: For every n≥3, if R is an incompatible set of more than n−1 triplets over n labels, then some proper subset of R is incompatible. We show this bound is tight by exhibiting, for every n≥3, a set of n−1 triplets over n taxa such that R is incompatible, but every proper subset of R is compatible.

Phylogenetics; Quartet compatibility; Triplet compatibility; Character compatibility; Perfect phylogeny