Email updates

Keep up to date with the latest news and content from Algorithms for Molecular Biology and BioMed Central.

Open Access Highly Accessed Research

Bootstrapping phylogenies inferred from rearrangement data

Yu Lin, Vaibhav Rajan and Bernard ME Moret*

Author Affiliations

Laboratory for Computational Biology and Bioinformatics, EPFL, EPFL-IC-LCBB INJ230, Station 14, CH-1015 Lausanne, Switzerland

For all author emails, please log on.

Algorithms for Molecular Biology 2012, 7:21  doi:10.1186/1748-7188-7-21

Published: 29 August 2012

Abstract

Background

Large-scale sequencing of genomes has enabled the inference of phylogenies based on the evolution of genomic architecture, under such events as rearrangements, duplications, and losses. Many evolutionary models and associated algorithms have been designed over the last few years and have found use in comparative genomics and phylogenetic inference. However, the assessment of phylogenies built from such data has not been properly addressed to date. The standard method used in sequence-based phylogenetic inference is the bootstrap, but it relies on a large number of homologous characters that can be resampled; yet in the case of rearrangements, the entire genome is a single character. Alternatives such as the jackknife suffer from the same problem, while likelihood tests cannot be applied in the absence of well established probabilistic models.

Results

We present a new approach to the assessment of distance-based phylogenetic inference from whole-genome data; our approach combines features of the jackknife and the bootstrap and remains nonparametric. For each feature of our method, we give an equivalent feature in the sequence-based framework; we also present the results of extensive experimental testing, in both sequence-based and genome-based frameworks. Through the feature-by-feature comparison and the experimental results, we show that our bootstrapping approach is on par with the classic phylogenetic bootstrap used in sequence-based reconstruction, and we establish the clear superiority of the classic bootstrap for sequence data and of our corresponding new approach for rearrangement data over proposed variants. Finally, we test our approach on a small dataset of mammalian genomes, verifying that the support values match current thinking about the respective branches.

Conclusions

Our method is the first to provide a standard of assessment to match that of the classic phylogenetic bootstrap for aligned sequences. Its support values follow a similar scale and its receiver-operating characteristics are nearly identical, indicating that it provides similar levels of sensitivity and specificity. Thus our assessment method makes it possible to conduct phylogenetic analyses on whole genomes with the same degree of confidence as for analyses on aligned sequences. Extensions to search-based inference methods such as maximum parsimony and maximum likelihood are possible, but remain to be thoroughly tested.

Keywords:
Bootstrap; Jackknife; Phylogenetic reconstruction; Rearrangement; Gene order; Comparative genomics